Mixed Effects Models for Complex Data

€ 109,00
+ € 6,49 Verzending

Mixed Effects Models for Complex Data

  • Merk: Unbranded
Verkocht door:

Mixed Effects Models for Complex Data

  • Merk: Unbranded

€ 109,00

Op voorraad
+ € 6,49 Verzending

14-dagen retourbeleid

Verkocht door:

€ 109,00

Op voorraad
+ € 6,49 Verzending

14-dagen retourbeleid

Betaalmethoden:

Beschrijving

Mixed Effects Models for Complex Data

Although standard mixed effects models are useful in a range of studies other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts missing data measurement errors censoring and outliers. For each class of mixed effects model the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data the book introduces linear mixed effects (LME) models generalized linear mixed models (GLMMs) nonlinear mixed effects (NLME) models and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values measurement errors censoring and outliers. Self-contained coverage of specific topicsSubsequent chapters delve more deeply into missing data problems covariate measurement errors and censored responses in mixed effects models. Focusing on incomplete data the book also covers survival and frailty models joint models of survival and longitudinal data robust methods for mixed effects models marginal generalized estimating equation (GEE) models for longitudinal or clustered data and Bayesian methods for mixed effects models. Background materialIn the appendix the author provides background information such as likelihood theory the Gibbs sampler rejection and importance sampling methods numerical integration methods optimization methods bootstrap and matrix algebra. Failure to properly address missing data measurement errors and other issues in statistical analyses can lead . Language: English
  • Merk: Unbranded
  • Categorie: Onderwijs
  • Artiest: Lang Wu
  • Uitgever / Label: CRC Press
  • Formaat: Paperback
  • Aantal pagina's: 440
  • Verschijningsdatum: 2019/09/05
  • Taal: English
  • Fruugo-ID: 337358561-740984993
  • ISBN: 9780367384913

Levering & retouren

Verzonden binnen6 dagen

  • STANDARD: € 6,49 - Levering tussen wo 14 januari 2026–ma 19 januari 2026

Verzending vanaf Verenigd Koninkrijk.

We doen ons best om ervoor te zorgen dat de producten die u bestelt volledig en volgens uw specificaties bij u worden afgeleverd. Mocht u echter een onvolledige bestelling ontvangen of andere artikelen dan degene die u heeft besteld, of als er een andere reden is waarom u niet tevreden bent met de bestelling, dan kunt u de bestelling retourneren, of welk product dan ook die bij de bestelling was inbegrepen, en ontvangt u een volledige terugbetaling voor de artikelen. Bekijk het volledige retourbeleid